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• Spout-fluidized beds help suppress de-fluidization and agglomeration, enhance 
heat and mass transfer, facilitate the adjustment of operating parameters, 
extend the size range of particles

• The spout is a local high velocity region at the center of the bed where solid 
particles and voids (bubbles) move in a structured manner with little radial 
displacement

• Numerical simulations of spouted beds at the particle level are essential to 
understand flow behaviors that are crucial in the design and operation of 
systems

• Comparison and validation of numerical predications against experimental 
readings is necessary to evaluate the accuracy and applicability of 
computational models for spouted beds

Background and objectives
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• Different flow patterns depending on operating conditions can be broadly 
classified into five flow regimes1

Flow Regimes in Fluidized Beds

Fixed bed/ 
internal spout

Spout-
fluidization

SluggingJet in fluidized 
bed

Spouting w/ 
aeration

1Zhang, J. & Tang, F. (2006) Prediction of flow regimes in spout-fluidized beds. China Particuology, 4(3-4), 189-193.
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• Spout channel does not penetrate through the bed
• Only particles in the spout channel are moving
• Stable particle configuration
• Mildly fluctuating pressure drop with no periodicity

Internal spout
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• Spout channel penetrates the entire bed
• Only particles in and close to the spout channel are fluidized
• Stable particle configuration
• Slightly fluctuating pressure drop with minimal periodicity

Spouting with aeration
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• Particles in the upper part of the bed are fluidized and move gently
• Spout channel is periodically blocked by particles from the annulus
• Pressure fluctuations are small but regular
• Clear dominant frequency associated with the time taken to remove the 

blockage

Spout-fluidization
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• All particles moving and bubbles are continuously formed in the annulus
• Spout channel present but periodically blocked or diverted through the 

annulus
• Bubbles are smaller than in the slugging bed regime so the associated 

frequency is higher
• Frequency spectra can be different for comparable operating conditions 

based on relative frequencies of bubble formation and spout blockage

Jet in fluidized bed
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• All particles moving and slugs (bubbles with larger diameter than the bed) 
are continuously formed

• Large pressure drop fluctuations associated with formation of slugs
• Distinct periodic behavior with a low(er) dominant frequency because the 

slugs take time to form and propagate

Slugging bed
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Regime Frequency Shape Power

Internal spout No peak No peak Low

Spouting with aeration No peak No peak Low

Spout-fluidization High Narrow (< 0.5 Hz) High

Slugging bed Low Broad (> 1 Hz) High

Jet in fluidized bed Intermediate Intermediate High

Identifying flow regimes by pressure 
spectra
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Experimental setup & particle properties

†Particles automatically in bed generated based on initial specified height

Property Experiment1 Simulation

𝑑𝑑𝑝𝑝 (mm) 4.04 ± 0.02 4.04

𝜌𝜌𝑝𝑝 (kg/m³) 2,526 ± 1 2,526

𝑢𝑢𝑚𝑚𝑚𝑚 (m/s) 1.77 ± 0.03 1.97

𝑒𝑒𝑛𝑛,𝑝𝑝↔𝑝𝑝 0.97 ± 0.01 0.97

𝑒𝑒𝑛𝑛,𝑝𝑝↔𝑤𝑤 0.97 ± 0.01 0.97

𝜇𝜇𝑝𝑝↔𝑝𝑝 0.10 ± 0.01 0.10

𝜇𝜇𝑝𝑝↔𝑤𝑤 0.10 ± 0.01 0.10

# particles 44800 42840†

1Link, J. M., Cuypers, L. A., Deen, N. G., & Kuipers, J. A. (2005). Flow regimes in a spout–fluid bed: A combined experimental and simulation 
study. Chem. Eng. Sci., 60, 3425-3442.
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• Simulations performed in open source code MFiX-DEM1 – Multiphase Flow 
with Interphase eXchanges

• Soft-sphere model for particle collisions (𝑘𝑘𝑛𝑛 = 10,000 N/m, 𝜂𝜂 = 0.97)
• Interphase momentum transfer computed using Gidaspow drag law2 (based 

on Wen & Yu model3 and Ergun equation4)

Simulation Approach

1Garg, R., Galvin, J., Li, T., & Pannala, S. (2012). Documentation of open-source MFIX–DEM software for gas-solids flow. Retrieved July 31, 
2017, from https://mfix.netl.doe.gov/documentation/dem_doc_2012-1.pdf.
2Gidaspow, D. (1992). Multiphase Flow and Fluidization. San Diego, CA: Academic Press.
3Wen, C. Y., & Yu, H. Y. (1966). Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser., 62, 100-111.
4Ergun, S. (1952). Fluid flow through packed columns. Chem. Eng. Prog., 48, 89-94.

https://mfix.netl.doe.gov/documentation/dem_doc_2012-1.pdf
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• 𝑢𝑢𝑚𝑚𝑚𝑚 is the minimum superficial fluid velocity needed to fluidize a bed
• As gas flow into the packed bed is increased, the pressure drop Δ𝑝𝑝 across 

the bed increases until the minimum fluidization condition
• At the minimum fluidization condition the net weight of the bed is exactly 

balanced by Δ𝑝𝑝
• Further increase in the superficial velocity results in no further increase in 
Δ𝑝𝑝

• Bubbles can cause Δ𝑝𝑝 to fluctuate but the average value should remain 
constant

Determining 𝒖𝒖𝒎𝒎𝒎𝒎 in simulation
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Determining 𝒖𝒖𝒎𝒎𝒎𝒎 in simulation

• Minimum fluidization occurs at intersection 
of linearly increasing pressure and constant 
pressure

• At minimum fluidization,
Δ𝑝𝑝
𝐿𝐿

= 1 − 𝜀𝜀𝑚𝑚𝑚𝑚 𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑚𝑚 g

𝑢𝑢𝑚𝑚𝑚𝑚 = 1.97 m/s
𝜀𝜀𝑚𝑚𝑚𝑚 = 0.365
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• Particles are visualized by their motion at 𝑢𝑢 = {1.96, 1.97, 1.98 m/s}
• Only few individual particles exhibit motion at 1.96 m/s
• Significant number of particles fluidized at 1.97 m/s

Confirming 𝒖𝒖𝒎𝒎𝒎𝒎 by visualization

𝑢𝑢=1.96 m/s 𝑢𝑢=1.97 m/s 𝑢𝑢=1.98 m/s
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Simulation test cases

Case 𝒖𝒖𝒃𝒃𝒃𝒃 (m/s) ⁄𝒖𝒖𝒃𝒃𝒃𝒃 𝒖𝒖𝒎𝒎𝒎𝒎 𝒖𝒖𝒔𝒔𝒔𝒔 (m/s) ⁄𝒖𝒖𝒔𝒔𝒔𝒔 𝒖𝒖𝒎𝒎𝒎𝒎

A 0.3 0.15 76 39

B 1.8 0.9 103 53

C 2.0 1.0 90 46

D 2.2 1.1 76 39

E 3.1 1.6 41 34

F 3.9 2.0 3.9 2.0
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Results and discussion – Case A

• Spout channel is evident but does 
not penetrate bed

• Kinetic energy of particles goes 
towards loosening the original 
closely packed configuration

• Frequency spectrum of pressure 
drop shows no periodicity
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• All three cases exhibit spouting behavior and have a similar overall shape
• Pressure spectra and particle velocities can differentiate the flow regimes 

between these configurations

Results and discussion – Cases B,C,D

Case B Case DCase C
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Results and discussion – Case B

• Very fast spout with no fluidization 
in the annulus

• Discernible ‘peak’ with low power 
at a relatively high frequency

• Despite the slight periodicity, this 
configuration lies in the spouting 
with aeration regime
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Results and discussion – Case C

• Reduced spout velocity and more 
movement in annulus

• Peak is more distinct – narrower 
and with higher power

• Increased periodicity associated with 
intermittent blockage of spout by 
entrained particles from annulus 
but no clear dominant frequency

• Characterizes an intermediate regime 
between spouting with aeration 
and spout fluidization
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Results and discussion – Case D

• Further reduced spout velocity reflects 
in maximum bed height; annulus 
shows more particle movement

• Sharp peak shows clear dominant 
frequency at 6.5 Hz with very high 
power

• Second harmonic peak also visible
• Definitely in the spout-fluidization 

regime
• Dominant frequency is in excellent 

agreement with experimental data



21

• Increased fluidization in annulus and 
lower velocity in spout are both
essential for spout-fluidization

• Peak becomes broader and shifts to 
the right

• Behavior closer to the intermediate 
regime

Results and discussion – Case D*
𝑢𝑢𝑠𝑠𝑝𝑝 increased to 86 m/s with same 𝑢𝑢𝑏𝑏𝑏𝑏
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Results and discussion – Case E

• Annulus is completely 
fluidized and starts to 
bubble

• Spout channel period-
ically diverted 
through annulus

• Flow configuration is 
an overlap of a spout-
fluidized bed and a 
bubbling bed

• Somewhat wide peak 
at 3 Hz with power of 
1600
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Results and discussion – Case F

• Particles across the bed 
shoot up rapidly 
forming bubbles 
larger than the bed 
width known as slugs

• Time scale of slug 
formation matches 
experiment

• Low frequency of 1.6 
Hz agrees with 
experiment (but twin 
peaks instead of one 
wide peak)
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Parameter study: spring stiffness

• Many model parameters are indeterminate1

• 𝑒𝑒𝑡𝑡, 𝑘𝑘𝑡𝑡 cannot be derived
• Physical values of 𝑘𝑘𝑛𝑛 cannot be used

• Little to no effect on 𝑢𝑢𝑚𝑚𝑚𝑚 so differences in 
flow regimes cannot be attributed to 
differing ⁄𝑢𝑢𝑠𝑠𝑝𝑝 𝑢𝑢𝑚𝑚𝑚𝑚 and ⁄𝑢𝑢𝑏𝑏𝑏𝑏 𝑢𝑢𝑚𝑚𝑚𝑚 ratios

• Investigate effects in spouting with aeration 
regime as it has largest particle velocities 
(collision forces largest)

• Spring stiffness is reduced to 𝑘𝑘𝑛𝑛 = 100 N/m
• Clear dominant frequency at 5.0 Hz with high 

power of 5,300
• Additional harmonic frequencies present

𝑘𝑘𝑛𝑛=10,000 N/m

𝑘𝑘𝑛𝑛=100 N/m

1Bakshi, A. et al. Multivariate sensitivity analysis of CFD-DEM: Critical model parameters 
and their impact on fluidization hydrodynamics, 2017 AIChE Annual Meeting, October 
29-November 3, Minneapolis, MN.
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• Detailed numerical simulation of spouted bed experiment over a range of 
flow conditions corresponding to different flow regimes

• Spectral analysis of the pressure fluctuations are used to characterize the 
flow regimes accurately

• Flow regimes predicted by simulation are in excellent agreement with the 
experiment including good quantitative matches where applicable

• MFiX-DEM is a powerful tool for predicting key performance parameters for 
effective design, tuning and optimization of spout-fluidized systems

Conclusions
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Backup Slides – Fluidization Snapshots

𝑢𝑢=1.96 m/s 𝑢𝑢=1.97 m/s 𝑢𝑢=1.98 m/s
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Backup Slides – Bed Snapshots
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